Abstract

Heat pumps embody solutions that heat or cool buildings effectively and sustainably, with zero emissions at the place of installation. As they pose significant load on the power grid, knowledge on their existence is crucial for grid operators, e.g., to forecast load and to plan grid operation. Further details, like the thermal reservoir (ground or air source) or the age of a heat pump installation renders energy-related services possible that utility companies can offer in the future (e.g., detecting wrongly calibrated installations, household energy efficiency checks). This study investigates the prediction of heat pump installations, their thermal reservoir and age. For this, we obtained a dataset with 397 households in Switzerland, all equipped with smart meters, collected ground truth data on installed heat pumps and enriched this data with weather data and geographical information. Our investigation replicates the state of the art in the area of heat pump detection and goes beyond it, as we obtain three major findings: First, machine learning can detect the existence of heat pumps with an AUC performance metric of 0.82, their heat reservoir with an AUC of 0.86, and their age with an AUC of 0.73. Second, heat pump existence can be better detected using data during the heating period than during summer. Third the number of training samples to detect the existence of heat pumps must not be necessarily large in terms of the number of training instances and observation period.

Highlights

  • Heat pumps are modern systems that effectively, and sustainably, heat and cool rooms and domestic hot water

  • This paper investigated the application of machine learning algorithms to detect the existence of heat pumps as well as characteristics about such installations from 15-min smart meter data

  • We draw on two earlier works on heat pump detection (one covers installations in the U.S (Fei et al 2013) and the other installations in Switzerland (Hopf et al 2018; Hopf 2019)), replicate their results and pursued further analyses

Read more

Summary

Introduction

Heat pumps are modern systems that effectively, and sustainably, heat and cool rooms and domestic hot water They use electricity to convert natural energy from ground water, the earth or air into usable heat energy. Heat pumps are attractive for residential homes due to their efficient energy generation, they require little maintenance (Karytsas and Choropanitis 2017) and have a long service life, which usually amortizes their higher purchase price over their time of operation. In addition to these basic characteristics, such heating systems. Grid operators can benefit from a greater diffusion of heat pumps—under their control—in four ways (Fischer and Madani 2017): First, they can use heat pumps for grid easing (e.g., voltage control, congestion management, and as operating reserve), to integrate renewable energies (e.g., wind, photovoltaic, smoothing of residual load) by coupling the sectors electricity and heat, and to better manage electricity prices (e.g., time of use, day ahead, and dynamic pricing)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.