Abstract

Many present spaceborne synthetic aperture radar (SAR) systems are constrained to only two channels for ground moving target indication (GMTI). Along-track interferometry (ATI) technique is currently exploited to detect slowly moving targets and measure their radial velocity and azimuth real position. In this paper, based on the joint probability density function (PDF) of interferogram's phase and amplitude and the two hypotheses and clutter plus signal, several constant false alarm rate (CFAR) detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR) and low clutter-to-noise ratio (CNR) conditions. The CFAR detectors include one-step CFAR detector with interferometric phase, two-step CFAR detectors, and two-dimensional (2D) CFAR detector. The likelihood ratio test (LRT) based on the Neyman-Pearson (NP) criterion is exploited as an upper bound for the performance of the other CFAR detectors. Performance analyses demonstrate the superiority of the 2D CFAR techniques to detect dim slowly moving targets for spaceborne system.

Highlights

  • Many present spaceborne synthetic aperture radar (SAR) systems, such as TerraSAR-X and RADARSAT-2, are constrained to two channels to detect slowly moving targets on the ground

  • Along-track interferometry (ATI) technique exploits the interferogram of the two channel SAR images to perform moving target detection, radial velocity measurement, and azimuth relocation

  • In this paper, based on the joint probability density function (PDF) of interferogram’s phase and amplitude and the two hypotheses “clutter” and “clutter plus signal”, several constant false alarm rate (CFAR) detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR) and low clutter-to-noise ratio (CNR) conditions

Read more

Summary

Introduction

Many present spaceborne synthetic aperture radar (SAR) systems, such as TerraSAR-X and RADARSAT-2, are constrained to two channels to detect slowly moving targets on the ground. In this paper, based on the joint probability density function (PDF) of interferogram’s phase and amplitude and the two hypotheses “clutter” and “clutter plus signal”, several constant false alarm rate (CFAR) detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR) and low clutter-to-noise ratio (CNR) conditions. Some realistic assumptions are described as follows: (i) Gaussian distributed stationary clutter which is validated over homogeneous agricultural and natural areas [1]; (ii) moving target is modeled as point target of Swerling 0 case with a constant velocity; (iii) magnitude and phase errors caused by mismatched SAR processing or channel unbalance have been eliminated prior to the detection; (iv) the SAR resolution cell is larger than the target size that contains both clutter and moving target; (v) the definitions of SCR and CNR are proposed in [6], which are different from traditional definitions used in GMTI. Numerical integration can be used to calculate the theoretical PDF of phase or magnitude

CFAR Detectors and Likelihood Ratio Test Based on the Optimum NP Criterion
Performance Analysis and Comparisons
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.