Abstract

Electrospray ionization mass spectrometry (ESI-MS) is one of the most popular techniques for obtaining structural information, which is commonly used in bioanalysis and clinical diagnostics. However, for the detection of complicated samples with high reactivities (such as reactive sulfur species, RSS), traditional ESI-MS usually suffers from overlapped and inaccurate signals. In this study, based on the multiphase flow of extractive electrospray ionization (MF-EESI), an ambient MS technique of online derivatization was proposed to detect thiols without any other sample pretreatment. RSS molecules and the derivatization reagent of 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl) were introduced into the internal and innermost capillary of the MF-EESI system, respectively. By a high-velocity nebulizing stream of N2 gas through an external capillary, both flows of innermost biothiols and internal NBD-Cl were electrosprayed and mixed for online reactions. Therefore, the fast derivatization of thiols was used to generate stable ionized derivatives for MS detection. By evaluating the changes in MS signals before and after the derivatization, the ions of RSS were identified simply and correctly. Without any sample pretreatment, the fast detection of cysteine, homocysteine, and glutathione has been achieved in the complicated samples. The present online derivatization-based MF-EESI was successfully used for fast, simple, and accurate detection of biothiols. This presented a potential pathway for the fast identification of thiols in complicated samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.