Abstract

An amperometric glucose biosensor based on the direct electron transfer of glucose oxidase (GOx) was developed by electrochemically entrapping GOx onto the inner wall of highly ordered polyaniline nanotubes (nanoPANi), which was synthesized using anodic aluminum oxide (AAO) membrane as a template. The cyclic voltammetric results indicated that GOx immobilized on the nanoPANi underwent direct electron transfer reaction, and the cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -405 +/- 5 mV and an apparent electron transfer rate constant of 5.8 +/- 1.6 s(-1). The biosensor had good electrocatalytic activity toward oxidation of glucose and exhibited a rapid response (approximately 3 s), a low detection limit (0.3 +/- 0.1 microM), a useful linear range (0.01-5.5 mM), high sensitivity (97.18 +/- 4.62 microA mM(-1) cm(-2)), higher biological affinity (the apparent Michaelis-Mentan constant was estimated to be 2.37 +/- 0.5 mM) as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low detection potential (-0.3 V vs SCE). The biosensor can also be used for quantification of the concentration of glucose in real clinical samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call