Abstract
Highly sensitive and specific radioimmunoassays have been validated for autoantibodies reacting with the four major autoantigens identified so far in autoimmune diabetes. However, the analysis of this large number of autoantigens has increased the costs and time necessary for complete autoantibody screenings. Our aim was to demonstrate that it is possible to detect the immunoreactivity against a combination of four different autoantigens by a single assay, this representing a rapid, low-cost first approach to evaluate humoral autoimmunity in diabetes. By using this novel multi-autoantigen radioimmunoassay (MAA), in subsequent steps we analysed 830 sera, 476 of known and 354 of unknown diabetes-specific immunoreactivity, collected from various groups of individuals including type 1 and type 2 diabetes patients, autoantibody-positive patients with a clinical diagnosis of type 2 diabetes (LADA), prediabetic subjects, individuals at risk to develop autoimmune diabetes, siblings of type 1 diabetic patients, coeliac patients and healthy control subjects. All sera reacting with one or more of the four autoantigens by single assays also resulted positive with MAA, as well as eight of 24 type 1 diabetic patients classified initially as autoantibody-negative at disease onset based on single autoantibody assays. In addition, MAA showed 92% sensitivity and 99% specificity by analysing 140 blinded sera from type 1 diabetic patients and control subjects provided in the 2010 Diabetes Autoantibody Standardization Program. MAA is the first combined method also able to evaluate, in addition to glutamic acid decarboxylase (GAD) and tyrosine phosphatase (IA)-2, insulin and islet beta-cell zinc cation efflux transporter (ZnT8) autoantibodies. It appears to be particularly appropriate as a first-line approach for large-scale population-based screenings of anti-islet autoimmunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.