Abstract

A glass substrate coated with ZnO nanorods via a hydrothermal method for formaldehyde vapor sensing is reported. The proposed sensor device was characterized against formaldehyde vapor concentrations varying from 1% to 5% with a reference point as 0% (pure water) at room temperature. A significant sensing response was observed where the output voltage reduced by 0.0856 V via scattering effect by ZnO nanorods upon exposure to the maximum tested concentration (5%). The sensitivity and linearity of the sensing response were recorded to be approximate values of −0.0168 V/% and 98.06% correspondingly. The sensor device was found to have good measurement stability in measuring as low as 1% of concentration for a prolonged time of 600 s. This proposed sensor has potential applications in monitoring air pollution caused not only by formaldehyde vapor but also by other harmful and toxic vapors or gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.