Abstract

Molecular diagnosis of foodborne methicillin-resistant Staphylococcus aureus (MRSA) is crucial for controlling its dissemination and ensuring food safety. However, existing genetic methods are limited by susceptibility to aerosol contamination and restricted to single-gene detection. Herein, a fluorescent biosensor employing fluorescence-encoded microspheres and Argonaute-mediated decoding is developed, enabling ultrasensitive, accurate, and duplex detection of MRSA genes. This assay utilizes a target-triggered polymerization/nicking reaction to cyclically produce specific guide DNA, guiding Argonaute protein to site-specifically cleave the molecular beacon on the microsphere, thereby decoding a fluorescent signal. Notably, the fluorescence-encoded microsphere, designed via on-tetrahedron rolling circle amplification, achieves high fluorescence loadings in a unit area. This biosensor demonstrates simultaneous detection of two unamplified MRSA genes, mecA and femA, at concentrations as low as 0.63 fM and 0.48 fM, respectively. Moreover, the method exhibited excellent recoveries in milk, egg, and pork samples ranging from 73% to 112%, highlighting its practicability in real scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call