Abstract

A “ubiquitous human health care system” will require a monolithic optical total analysis system (TAS) consisting of waveguides and microfluidic channels based on a transparent resin chip. Together with the rapid development of the fluorescent marking method, fluorescence analysis by TAS of mixed-microparticle specimen attached to different fluorescent substances will be necessary. Towards realization of this, we here propose a novel method for using a part of the fluorescence acquired by irradiating microparticles with AC-modulated laser power as light dedicated to the discrimination of fluorescent substances. Since the light power for discrimination was extremely weak, we extracted effective signal components using a lock-in detection method. Then, by comparison with the signal of the original fluorescence, we could determine whether the fluorescence signal was from the microparticles attached to the fluorescent substance to be discriminated. Using a mixed specimen composed of microparticle-attached fluorescent substances with emission peaks of 520 nm and 600 nm, we found that 10% of the acquired fluorescence could successfully determine the specified fluorescent substance as a discrimination signal. The peak value of the discrimination signal was approximately double the amplitude of the stationary noise in the discrimination signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.