Abstract

One of the main features of Weyl semimetals is the existence of Fermi arc surface states at their surface, which cannot be realized in pure two-dimensional systems in the absence of many-body interactions. Due to the gapless bulk of the semimetal, it is, however, challenging to observe clear signatures from the Fermi arc surface states. Here, we propose to detect such novel surface states via perfect negative refraction that occurs between two adjacent open surfaces with properly orientated Fermi arcs. Specifically, this phenomenon visibly manifests in non-local transport measurement, where the negative refraction generates a return peak in the real-space conductance. This provides a unique signature of the Fermi arc surface states. We discuss the appearance of this peak both in inversion and time-reversal symmetric Weyl semimetals, where the latter exhibits conductance oscillations due to multiple negative refraction scattering events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.