Abstract
With the proliferation of social media platforms that provide anonymity, easy access, online community development, and online debate, detecting and tracking hate speech has become a major concern for society, individuals, policymakers, and researchers. Combating hate speech and fake news are the most pressing societal issues. It is difficult to expose false claims before they cause significant harm. Automatic fact or claim verification has recently piqued the interest of various research communities. Despite efforts to use automatic approaches for detection and monitoring, their results are still unsatisfactory, and that requires more research work in the area. Fake news and hate speech messages are any messages on social media platforms that spread negativity in society about sex, caste, religion, politics, race, disability, sexual orientation, and so on. Thus, the type of massage is extremely difficult to detect and combat. This work aims to analyze the optimal approaches for this kind of problem, as well as the relationship between the approaches, dataset type, size, and accuracy. Finally, based on the analysis results of the implemented approaches, deep learning (DL) approaches have been recommended for other Ethiopian languages to increase the performance of all evaluation metrics from different social media platforms. Additionally, as the review results indicate, the combination of DL and machine learning (ML) approaches with a balanced dataset can improve the detection and combating performance of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.