Abstract

For the purpose of realizing fast and effective detection of defects in woven fabric, and in consideration of the inherent characteristics of fabric texture, i.e., periodicity and orientation, a new approach for fabric texture analysis, based on the modern spectral analysis of a time series rather than the classical spectral analysis of an image, is proposed in this paper. Traditionally, a power spectral estimated by a two-dimensional Fast Fourier transformation (FFT) is usually employed in the detection of fabric defects, which involves a large computational complexity and a relatively low accuracy of spectral estimation. To this effect, this paper makes a one-dimensional power spectral density (PSD) analysis of the fabric image via a Burg-algorithm-based Auto-Regressive (AR) spectral estimation model, and accordingly extracts features capable of effectively differentiating normal textures from defective ones. A support vector data description is adopted as a detector in order to deal with defect detection, a typical task of one-class classification. Experimental results for the detection of defects from several fabric collections with different texture backgrounds indicate that a low false alarm rate and a low missing rate can be simultaneously obtained with less computational complexity. Comparison of the detection results between the AR model and the FFT method confirms the superiority of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call