Abstract

The existing model-independent methods for the detection of exons in DNA could not prove to be ideal as commonly employed fixed window length strategy produces spectral leakage causing signal noise The Modified-Gabor-wavelet-transform exploits a multiscale strategy to deal with the issue to some extent. Yet, no rule regarding the occurrence of small and large exons has been specified. To overcome this randomness, scaling-factor of GWT has been adapted based on a fuzzy rule. Due to the nucleotides' genetic code and fuzzy behaviors in DNA configuration, this work could adopt the fuzzy approach. Two fuzzy membership functions (large and small) take care of the variation in the coding regions. The fuzzy-based learning parameter adaptively tunes the scale factor for fast and precise prediction of exons. The proposed approach has an immense plus point of being capable of isolating detailed sub-regions in each exon efficiently proving its efficacy comparing with existing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.