Abstract

Because GHB (gamma-hydroxybutyrate) is present in both blood and urine of the general population, toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. In this paper, we propose a procedure for the detection of exogenous GHB in blood by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Following liquid-liquid and solid-phase extractions, GHB is derivatized to GHB di-TMS before analysis by GC-C-IRMS. Significant differences in the carbon isotopic ratio (delta(13)C-values > 13.5 per thousand) were found between endogenous and synthetic GHB. Indeed, for postmortem blood samples with different GHB concentrations (range: 13.8-86.3 mg/L), we have obtained GHB delta(13)C-values ranging from -20.6 to -24.7 per thousand, whereas delta(13)C-values for the GHB from police seizure were in the range -38.2 to -50.2 per thousand. In contrast to the use of cut-off concentrations for positive postmortem blood GHB concentrations, this method should provide an unambiguous indication of the drug origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call