Abstract

Enzymatic bio-nanotransduction is a biological detection scheme based on the production of nucleic acid nano-signals (RNA) in response to specific biological recognition events. In this study, we applied an enzymatic bio-nanotransduction system to the detection of important food-related pathogens and a toxin. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and staphylococcal enterotoxin B (SEB) were chosen because of the implications of these targets to food safety. Primary antibodies to each of the targets were used to functionalize magnetic beads and produce biological recognition elements (antibodies) conjugated to nano-signal–producing DNA templates. Immunomagnetic capture that was followed by in vitro transcription of DNA templates bound to target molecules produced RNA nano-signals specific for every target in the sample. Discrimination of RNA nano-signals with a standard enzyme-linked oligonucleotide fluorescence assay provided a correlation between nano-signal profiles and target concentrations. The estimated limit of detection was 2.4 × 103 CFU/ml for E. coli O157:H7, 1.9 × 104 CFU/ml for S. enterica serovar Typhimurium, and 0.11 ng/ml for SEB with multianalyte detection in buffer. Low levels of one target were also detected in the presence of interference from high levels of the other targets. Finally, targets were detected in milk, and detection was improved for E. coli O157 by heat treatment of the milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call