Abstract

BackgroundEpithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro.MethodsWe generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence.Resultsβgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT.ConclusionWe observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis.

Highlights

  • Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis

  • Airway smooth muscle cells (SMCs) might dedifferentiate into myofibroblasts, but this possibility has been ruled out by several studies suggesting that ultrastructural features and extracellular matrix (ECM) expression profiles of myofibroblasts are more similar to fibroblasts than to SMCs [1,5]

  • Reagents For histological immunofluorescent staining, anti-α-smooth muscle actin (α-SMA) monoclonal antibody was purchased from Sigma; anti-bovine smooth muscle myosin heavy chains (SMMHC) polyclonal antibody was kindly provided by Professor Mary Anne (NIH/NHLBI, US); rabbit antihuman E-cadherin pAb was purchased from Santa Cruz Biotechnology (Cat sc-7870), rabbit anti-mouse/human E-cadherin pAb was purchased from Boster Company (Cat BA0475)

Read more

Summary

Introduction

Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. Alveolar epithelial cells (AECs) have been shown to undergo epithelial to mesenchymal transition (EMT) to produce myofibroblasts in IPF patients and following TGF-β1 treatment in vitro [7,8,9]. The common BLM-induced pulmonary fibrotic model is derived from wild mouse and is unsuitable for tracking the origin of active myofibroblasts in the development of pulmonary fibrosis, due to their great "plasticity" and tendency to switch to other phenotypes [12]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.