Abstract

Methylation of 5-deoxy-cytidines of DNA constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation. Changes in global DNA methylation are involved in many plant developmental processes during proliferation and differentiation events. The analysis of the changes of global DNA methylation distribution patterns during microspore embryogenesis induction and progression will inform on the regulatory mechanisms of the process, helping in the design of protocols to improve its efficiency in different species. To investigate the DNA methylation dynamics during microspore embryogenesis in the different cell types present in the cultures, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. The immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been developed for in situ cellular analysis of a variety of plant samples, including embryogenic microspore and anther cultures. Quantification of 5mdC immunofluorescence intensity by image analysis software also permits to estimate differences in global DNA methylation levels among different cell types during development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.