Abstract

An assay based on a 2-step (semi-nested) polymerase chain reaction (PCR) was developed and evaluated for detection of enterovirus-specific RNA in cerebrospinal fluid (CSF) from patients with aseptic meningitis of different etiology. The limit of detectability of enteroviral RNA was equivalent to about 0.25 tissue culture infective doses 50%. In samples, stored at -70 degrees C, analyzed without repeated thawing, enteroviral RNA was demonstrable in 21/22 CSF specimens from which an enterovirus had been isolated. Enteroviral RNA was shown to be degraded during freeze-thawing of the samples. In repeatedly freeze-thawed samples from 134 consecutive patients with aseptic meningitis, a lower sensitivity (34/48 = 0.71) was observed. In the latest phase of the study, comprising 35 consecutive patients, the PCR was performed in CSF stored at -20 degrees C without thawing. In this material, the PCR yielded positive results in 19 patients, whereas enteroviruses were isolated from 6 cases only. In the total clinical material of 169 patients, 67 (40%) were found positive by PCR, whereas an enterovirus was isolated from CSF in 54 (32%) cases. All the 13 isolated enterovirus serotypes found in the study were demonstrable by PCR, indicating that the assay is broad-reacting within the enterovirus group. The specificity appeared to be high, since all of 21 patients with non-enteroviral diagnoses were negative by the PCR test, except 1 with an Epstein-Barr virus infection. As serological evidence of enteroviral etiology was found in this patient, a dual infection seemed probable. This study indicates that enteroviral RNA can be detected in CSF by a 2-step PCR in meningitis caused by enterovirus and that the technique has the potential to become a screening method for routine diagnosis of enteroviral meningitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.