Abstract

The direct detection of gravitational waves (GWs) was recently achieved by the Laser Interferometer Gravitational-wave Observatory (LIGO) team, which opened a new era of gravitational wave astronomy. With the operation of Advanced LIGO to scientific operation period, and in the next few years the other second generation detectors, such as Advanced Virgo and LIGO-India continuing to be built and put into use, there will be more and more GW signals being detected. Recently, GW signals from NS-NS merger and its electromagnetic (EM) counterpart have also been detected. Because of the faint nature of GW signals, detecting an EM emission signal coincident with a GW signal in both trigger time and spatial direction is essential to confirm the astrophysical origin of the GW signals and study the astrophysical properties of the GW sources (e.g. host galaxy, distance). Due to the poor localization ability of GW wave detectors (Advanced LIGO ~ 10–100 of square degrees), the detection of EM counterpart for GW events with large field of view high energy observational equipment is an urgent demand. Einstein Probe (EP) has a large field of view, all day long observation ability, high sensitivity, fast slewing and pointing capability, fast data downloading and other advantages, provides an ideal facility for the detection of EM counterpart for GW events. The successful operation of the Einstein Probe will promote the development of gravitational wave astronomy and gravitational wave cosmology, and make China in the international leading position for the study of the EM counterpart for the GW source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.