Abstract
Edge detection from Fourier spectral data is important in many applications including image processing and the post-processing of solutions to numerical partial differential equations. The concentration method, introduced by Gelb and Tadmor in 1999, locates jump discontinuities in piecewise smooth functions from their Fourier spectral data. However, as is true for all global techniques, the method yields strong oscillations near the jump discontinuities, which makes it difficult to distinguish true discontinuities from artificial oscillations. This paper introduces refinements to the concentration method to reduce the oscillations. These refinements also improve the results in noisy environments. One technique adds filtering to the concentration method. Another uses convolution to determine the strongest correlations between the waveform produced by the concentration method and the one produced by the jump function approximation of an indicator function. A zero crossing based concentration factor, which creates a more localized formulation of the jump function approximation, is also introduced. Finally, the effects of zero-mean white Gaussian noise on the refined concentration method are analyzed. The investigation confirms that by applying the refined techniques, the variance of the concentration method is significantly reduced in the presence of noise.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.