Abstract

Continuous measurement of radon-222 concentration in soil was carried out across duration of one year at a geologically faulted area having high regional heat flow to detect anomalies caused by seismic activities. The data reveals a range of periodicities present in the radon time series. To identify seismic induced radon changes we treat the time series data through various filtering methods to remove inherent periodicities. The Ensemble Empirical Mode Decomposition (EEMD) is deployed to decompose the signal into its characteristic modes. Hilbert Huang Transform (HHT) is applied for the first time on the physically significant modes obtained by EEMD to represent time–energy–frequency of the recorded soil radon time series. After removing the periodic and quasi-periodic constituents from the original time series, the simulated result shows a forceful correlation in recorded radon-222 anomalies with regional and local seismic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.