Abstract

Fourier domain low coherence interferometry (fLCI) is an emerging optical technique used to quantitatively assess cell nuclear morphology in tissue as a means of detecting early cancer development. In this work, we use the azoxymethane rat carcinogenesis model, a well characterized and established model for colon cancer research, to demonstrate the ability of fLCI to distinguish between normal and preneoplastic ex-vivo colon tissue. The results show highly statistically significant differences between the measured cell nuclear diameters of normal and azoxymethane-treated tissues, thus providing strong evidence that fLCI may be a powerful tool for non-invasive, quantitative detection of early changes associated with colorectal cancer development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.