Abstract

A novel application of the laser ultrasonic technique for the detection of drilling-induced delamination in composite components of aircrafts is proposed. Numerous key components of aircrafts are made of composite materials, and drilling is often a final operation during assembly. Drilling-induced delamination significantly reduces the structural reliability, and it is rather difficult to be detected effectively and automatically. The laser ultrasonic technique is a promising method to solve the problem. This paper investigates the characterization of drilling-induced delamination in composites by a noncontact laser ultrasonic method. A carbon fiber reinforced plastic laminate with drilling holes is prepared as a specimen. The characterization of drilling-induced delamination with laser-generated ultrasonic waves is investigated theoretically and experimentally, and the morphology features of the delamination are obtained by laser ultrasonic C-scan testing. The results prove that the laser ultrasonic technique is effective for the detection of drilling-induced delamination in composite components, and it is a feasible solution for evaluating the drilling quality during assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.