Abstract

Shot noise refers to the fluctuations in electrical current through a device arising from the discrete nature of the charge-carrying particles. Recent experiments have exploited the fact that the shot noise is proportional to the charge of the carriers to establish fractional quantization of quasiparticles in the fractional quantum Hall effect. By a similar argument, it is expected that when a superconducting reservoir emits Cooper pairs, (which have a charge twice that of an electron) into a short normal-metal wire, the shot noise should be double that obtained for a normal-metal reservoir. Although the charge of Cooper pairs has been well established by flux quantization and tunnel experiments, doubling of their shot noise has not yet been observed. Here we report a shot-noise experiment using a short diffusive normal-metal superconductor contact, in which we confirm the predicted noise behaviour for double charges. The measurements, taken over a large range of bias current, establish that phase coherence is not required to observe the effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.