Abstract

We have made the first definitive detection of disk accretion in an object near or below the substellar limit. We obtained an echelle-resolution spectrum of the very low mass T Tauri star V410 Anon 13; the emission-line profile of Hα clearly exhibits the large line width and asymmetry characteristic of a free-falling accretion flow. We use magnetospheric accretion models of the line profile to estimate the mass accretion rate in this object, which is the smallest yet determined. We further augment this with models of the accretion shock and disk to explain the absence of both optical veiling and an infrared excess, obtaining a firm upper limit to the accretion rate that is consistent with the Hα model. Our results indicate that disk accretion via magnetospheric infall occurs even in the lowest mass young objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.