Abstract
Abstract: Diabetic retinopathy is one of the most dangerous complications of diabetes, leading to permanent blindness if left untreated. One of the major challenges is early detection, which is very important for the success of treatment. Unfortunately, accurate identification of the stage of diabetic retinopathy is notoriously tricky and requires expert human interpretation of fundus images. Simplifying the detection step is essential and can help millions of people. Convolutional Neural Networks (CNNs) have been successfully used in many neighboring subjects and for the diagnosis of diabetic retinopathy itself. However, the high cost of large annotated datasets as well as inconsistencies between different clinicians hinders the implementation of these methods. In this paper, we propose an automatic method based on deep learning to detect the stage of diabetic retinopathy using a single human fundus image. In addition, we propose a multi-stage transfer learning approach that uses similar datasets with different labels. The presented method can be used as a screening method for the early detection of diabetic retinopathy with a sensitivity and specificity of 0.99 and is ranked 54 out of 2943 competing methods (quadratic weighted kappa score 0.925466) on the APTOS 2019 Blindness Detection Dataset (13,000 images).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.