Abstract

This work focuses on differentiating between pathological and healthy fundus images. The goal is to distinguish between diabetic retinopathy (DR), age-related macular degeneration (AMD) and normal images by analysing the texture of the retina background. Local Binary Patterns (LBP) are used as texture descriptors. The two class problems DR vs. normal and AMD vs. normal, as well as the three class problem of DR, AMD, and normal, have been tested and have obtained promising results. An average sensitivity and specificity higher than 0.86 in all the cases and almost of 0.96 for AMD detection were achieved with a random forest classifier. These results suggest that LBP is a robust texture descriptor for retinal images and the method proposed in this paper, analysing the retina background directly and avoiding difficult lesion segmentation, can be useful for diagnostic aid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.