Abstract
World Health Organization’s (WHO) report 2018, on diabetes has reported that the number of diabetic cases has increased from one hundred eight million to four hundred twenty-two million from the year 1980. The fact sheet shows that there is a major increase in diabetic cases from 4.7% to 8.5% among adults (18 years of age). Major health hazards caused due to diabetes include kidney function failure, heart disease, blindness, stroke, and lower limb dismembering. This article applies supervised machine learning algorithms on the Pima Indian Diabetic dataset to explore various patterns of risks involved using predictive models. Predictive model construction is based upon supervised machine learning algorithms: Naïve Bayes, Decision Tree, Random Forest, Gradient Boosted Tree, and Tree Ensemble. Further, the analytical patterns about these predictive models have been presented based on various performance parameters which include accuracy, precision, recall, and F-measure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.