Abstract

BackgroundDengue fever (DF) and dengue hemorrhagic fever (DHF) represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus) that comprises four distinct serotypes (DENV-1 to DENV-4). Fluorescence in situ hybridization (FISH) has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays.MethodsOligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae). The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy.ResultsThe three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes.ConclusionBased on the FISH technique, we propose a way to design and use oligonucleotide probes to detect arboviruses. Results showed that this method was successfully implemented to specifically detect DENV in a mosquito cell line, as well as in mosquito salivary glands for the DENV-2 serotype. In addition, we emphasize that FISH could be an alternative method to detect arboviruses in host tissues, also offering to circumvent the discontinuity of antibodies used in immunofluorescent assays.

Highlights

  • Dengue fever (DF) and dengue hemorrhagic fever (DHF) represent a global challenge in public health

  • dengue virus (DENV)-Probes A and B sequences matched with all DENV serotypes (Additional file 1: Figure S1)

  • The specificity of the two probes for the DENV-4 serotype was relatively low, and matched few DENV-4 isolates. This result might be unexpected as there is relatively little genomic divergence between DENV serotypes [44], we found that DENV-4 is the serotype with the fewest sequences available in GenBank, which could partly explain the BLASTn results

Read more

Summary

Introduction

Dengue fever (DF) and dengue hemorrhagic fever (DHF) represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus) that comprises four distinct serotypes (DENV-1 to DENV-4). DF and dengue hemorrhagic fever (DHF) are caused by dengue virus (DENV), an arbovirus (arthropod-borne virus) belonging to the Flavivirus genus that comprises other medically important viruses such as yellow fever virus (YFV), West Nile virus (WNV), tick-borne encephalitis virus (TBEV) and Japanese encephalitis virus (JEV) [3]. Four antigenically distinct serotypes (DENV-1 to DENV-4) are known, defined according to cell-surface antigens detected using various serological methods [4,5]. Nucleic acid sequencing showed that within serotypes, genetically distinct groups called genotypes exist whose sequences diverge at given regions of the genome [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call