Abstract

NG108-15 neuroblastoma cells differentiated with 0.1 M of all-trans retinoic acid (RA) were processed for immunohistochemical analysis using polyclonal antisera against the delta opioid receptor (DOR) and the N-Methyl-D-Aspartate receptor (NMDAR1) to determine the cellular sites for possible functional associations between DOR and NMDAR1 receptors. In this study, 6 days of RA treatment resulted in prominent morphological differentiation characterized by the appearance of numerous axon- and dendrite-like processes and formation of networks between the cell clusters. An immunocytochemical approach allowed the demonstration of antibody concentration-dependent differences, not evident in ligand binding studies, in the distribution of DOR and NMDA receptor protein between cell soma and processes. RA-differentiated cultures showed positive DOR-like immunostaining (DOR-LI) throughout the cell bodies as well as on the newly acquired processes. In contrast, NMDAR1-like immunoreactivity (NMDAR1-LI) in the RA-treated cells was detected in the cell soma and processes only with the higher concentration of the antiserum. With the lower concentration of the antibody the NMDAR1-LI was not detected in the processes and was limited to a punctuate subcellular distribution in the soma. The DOR-LI pattern of distribution in NG108-15 cells differentiated with RA appeared to be consistent with the DOR-LI detected in the CNS. The NMDAR1-LI distribution in these cells is similar to brain tissue with respect to its presence on the newly acquired processes. However, it differed from brain in that a much higher abundance of NMDAR1 receptors was observed in the cell soma. This differential distribution of DOR and NMDAR1 receptors in the RA-treated NG108-15 cells could provide a basis for future studies of drug-induced changes in these two receptors. J. Neurosci. Res. 47:83–89, 1997. © 1997 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.