Abstract
This paper presents an experimental investigation of a new method for damage detection based on the most fundamental concept in continuum mechanics: strain compatibility. Compliance with this principle implies a deformed material is free from discontinuities, which are indicative of many types of structural damage. Therefore the principle of strain compatibility, in its ability to identify discontinuities, is very promising as a new foundation for future research into non-destructive evaluation and structural health monitoring technologies. The proposed method has many advantages compared to existing damage detection techniques, such as its invariance to material properties, type and intensity of loading, and the geometry of the structure. In this paper, a proposed formulation of the strain compatibility equation for beam structures, which is invariant to loading intensity, is presented. An experimental investigation of the proposed algorithm was conducted on a delaminated cantilever beam, utilising a PSV-3D scanning laser vibrometer. The experiment demonstrated that the strain compatibility technique can accurately locate delamination damage in composite beam structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.