Abstract

Frequently, in rugby, players incorporate deceptive motions (e.g., a side-step) in order to pass their opponent. Previous works showed that expert defenders are more efficient in detecting deceptive motions. Performance was shown to be correlated with the evolution of the center of gravity of the attacker, suggesting that experts may rely on global motion cues. This study aims at investigating whether a representation of center of gravity can be useful for training purposes, by using this representation alone or by combining it with the local motion cues given by body parts. We designed an experiment in virtual reality to control the motion cues available to the defenders. Sixteen healthy participants (seven experts and nine novices) acted as defenders while a virtual attacker approached. Participants completed two separate tasks. The first was a time occlusion perception task, occlusion after 100ms, 200ms or 300ms after the initial change in direction, thereafter participants indicated the passing direction of the attacker. The second was a perception-action task, participants were instructed to intercept the oncoming attacker by displacing medio-laterally. The attacker performed either a non-deceptive motion, directly toward the final passing direction or a deceptive motion, initially toward a false direction before quickly reorienting to the true direction. There was a main effect of expertise, appearance, cut off times and motion on correct responses during both tasks. There was an interaction between visual appearance and expertise, and between motion type and expertise during the perception task, however, this interaction was not present during the perception-action task. We observed that experts maintained superiority in the perception of deceptive motion; however when the visual appearance is reduced to global motion alone the difference between novices and experts is reduced. We further explore the interactions and discuss the effects observed for the visual appearance and expertise.

Highlights

  • Rugby, as per field-based team sports, is characterized by brief high-intensity efforts of running and acceleration over longer low-intensity periods [1]

  • When considering the three-way interaction between expertise, appearance and motion (Fig 3C), there was a significance (F(1.443,28) = 7.795, p = 0.006, Z2p 1⁄4 0:36, α = 0.008); where we observe that experts and novices had an increased rate of success when interacting with VH (100% and 95.83±9.17%, respectively) and HC (100% and 99.07±3.34%, respectively) than CG (80.95±19.61% and 78.70±17.27%, respectively) during non-deceptive motion, experts had a greater rate of success from interacting with CG (20.24±18.74%) to VH (75±20.54%) and HC (75.60±26.66%) during deceptive motion than novices (15.28±14.43%, 39.81±31.97% and 38.89±33.85%, respectively)

  • Detection of deceptive motions in rugby from visual motion cues implemented such a scenario using head-mounted displays (HMD), they recruited 28 participants for the perception only task (14 experts and 14 novices) and 24 participants for their perception and action task (12 experts and 12 novices), and they concluded that there is a relationship between attacker CG and expert defender rate of success

Read more

Summary

Introduction

As per field-based team sports, is characterized by brief high-intensity efforts of running and acceleration over longer low-intensity periods [1]. A tackle as defined by the international governing body of rugby is when the ball-carrier is held by one or more opponents and brought to the ground. Due to this nature, a proportion of the game consists of tackling [2, 3], where an increased number of tackles has been associated to game success rate [4, 5]. Motor control and orientation of the body is coordinated according to a top-down strategy of head and gaze alignment before body reorientation [11], in a sport-specific context of deceptive motion Brault et al [7] reported a bottom-up strategy, where a displacement of support is prior to upper trunk and head reorientation. Trunk yaw was similar between deceptive and non-deceptive motion, the upper trunk angular movement changes (i.e., shoulders) would be exaggerated in deception

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call