Abstract

Chest radiography is an essential diagnostic tool for respiratory diseases such as COVID-19, pneumonia, and tuberculosis because it accurately depicts the structures of the chest. However, accurate detection of these diseases from radiographs is a complex task that requires the availability of medical imaging equipment and trained personnel. Conventional deep learning models offer a viable automated solution for this task. However, the high complexity of these models often poses a significant obstacle to their practical deployment within automated medical applications, including mobile apps, web apps, and cloud-based platforms. This study addresses and resolves this dilemma by reducing the complexity of neural networks using knowledge distillation techniques (KDT). The proposed technique trains a neural network on an extensive collection of chest X-ray images and propagates the knowledge to a smaller network capable of real-time detection. To create a comprehensive dataset, we have integrated three popular chest radiograph datasets with chest radiographs for COVID-19, pneumonia, and tuberculosis. Our experiments show that this knowledge distillation approach outperforms conventional deep learning methods in terms of computational complexity and performance for real-time respiratory disease detection. Specifically, our system achieves an impressive average accuracy of 0.97, precision of 0.94, and recall of 0.97.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.