Abstract

Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii), three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros), and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula), and Savi’s pipistrelle (Hypsugo savii). This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses.

Highlights

  • Coronaviruses (CoVs), order Nidovirales, family Coronaviridae, subfamily Coronavirinae, are enveloped, single-stranded positive-sense RNA viruses with a large genome of 26 to 32 kb [1]

  • The diversity of bat species and some of their unique biological and ecological features, such as long life spans, roosting and migratory behavior, the use of torpor and hibernation, and a unique adaptive immune system, allow them to serve as reservoirs for the emergence of new viruses [27]

  • Ten years after the severe acute respiratory syndrome (SARS) epidemic, the recent fatal human infections caused by the novel Middle East respiratory syndrome (MERS)-CoV, which is closely related to Bat-CoVs recently identified in Europe, Africa and China, has resulted in a new, intense interest in the discovery of CoVs in humans and animals

Read more

Summary

Introduction

Coronaviruses (CoVs), order Nidovirales, family Coronaviridae, subfamily Coronavirinae, are enveloped, single-stranded positive-sense RNA viruses with a large genome of 26 to 32 kb [1]. Infection with CoVs may be asymptomatic; they can be responsible for a range of diseases of veterinary and medical importance, including respiratory tract infections, gastroenteritis, hepatitis, and encephalomyelitis. CoVs have a high potential for interspecies transmission. Their large genome is susceptible to mutation and recombination events, new strains and viruses may originate and spread in a wide variety of animals [4,5]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call