Abstract

Background and aimsThe chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls. Materials and methodsThis work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness. ResultsIn the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy. ConclusionThe e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call