Abstract
State-of-the-art intelligent assistant systems such as Siri and Cortana do not consider control structures in the user input. They reliably react to ordinary commands. However, their architectures are not designed to cope with queries that require complex control flow structuring. We propose a system to overcome these limitations. Our approach models if-then-else, loop, and concurrency constructs in spoken utterances explicitly. The model bridges the gap between linguistic and programmatic semantics.To demonstrate our concept, we apply a rule-based approach. We have implemented three prototypes that use keyphrases to discover potential control structures depending on the type of control structure. However, the full structures are determined differently. For conditionals we use chunk and part-of-speech (POS) tags provided by natural language processing tools; for loops and concurrency we make use of an action extraction approach based on semantic role labeling (SRL). Additionally, we use coreference information to determine the extent of the respective structure.The explicit modeling of conditionals, loops, and concurrent sections allows us to evaluate the accuracy of our approaches independently from each other and from other language understanding tasks. We have conducted two user studies in the domain of humanoid robotics. The first focused on conditionals. Our prototype achieves F1scores from 0.783 (automatic speech recognition) to 0.898 (manual transcripts) on unrestricted utterances. In the second, the prototypes for loop and concurrency detection also proved useful. F1scores range from 0.588 (automatic speech recognition) to 0.814 (manual transcripts) for loops and from 0.622 (automatic speech recognition) to 0.842 (manual transcripts) for concurrent sections respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.