Abstract

Despite extensive research reveal rheumatoid arthritis (RA) is related to atherosclerosis (AS), common pathogenesis between these two diseases still needs to be explored. In current study, we explored the common pathogenesis between rheumatoid arthritis (RA) and atherosclerosis (AS) by identifying 297 Differentially Expressed Genes (DEGs) associated with both diseases. Through KEGG and GO functional analysis, we highlighted the correlation of these DEGs with crucial biological processes such as the vesicle transport, immune system process, signaling receptor binding, chemokine signaling and many others. Employing Protein-Protein Interaction (PPI) network analysis, we elucidated the associations between DEGs, revealing three gene modules enriched in immune system process, vesicle, signaling receptor binding, Pertussis, and among others. Additionally, through CytoHubba analysis, we pinpointed 11 hub genes integral to intergrin-mediated signaling pathway, plasma membrane, phosphotyrosine binding, chemokine signaling pathway and so on. Further investigation via the TRRUST database identified two key Transcription Factors (TFs), SPI1 and RELA, closely linked with these hub genes, shedding light on their regulatory roles. Finally, leveraging the collective insights from hub genes and TFs, we proposed 10 potential drug candidates targeting the molecular mechanisms underlying RA and AS pathogenesis. Further investigation on xCell revealed that 14 types of cells were all different in both AS and RA. This study underscores the shared pathogenic mechanisms, pivotal genes, and potential therapeutic interventions bridging RA and AS, offering valuable insights for future research and clinical management strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.