Abstract
To obtain a screening tool for colorectal cancer (CRC) based on gut microbiota, we seek here to identify an optimal classifier for CRC detection as well as a novel nonlinear feature selection method for determining the most discriminative microbial species. In this study, the intestinal microflora in feces of 141 patients were modeled using general regression neural networks (GRNNs) combined with the proposed feature selection method. The proposed model led to slightly higher accuracy (AUC = 0.911) than previous studies . The results show that the Clostridium scindens and Bifidobacterium angulatum are indicators of healthy gut flora and CRC happens to reduce these bacterial species. In addition, Fusobacterium gonidiaformans was found to be closely correlated with the CRC. The occurrence of colorectal adenoma was not sufficiently discriminatory based on fecal microbiota implicating that the change of colonic flora happens in the advanced phase of CRC development rather than initial adenoma. Integrating the proposed model with fecal occult blood test (FOBT), the CRC detection accuracy remained nearly unchanged (AUC = 0.915). The performance of the proposed method is validated using independent cohorts from America and Austria. Our results suggest that the proposed feature selection method combined with GRNN is potentially an accurate method for CRC detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.