Abstract
Abstract. Recent progress in deep learning methods has shown that key steps in object detection and recognition can be performed with convolutional neural networks (CNN). In this article, we adapt YOLO (You Only Look Once) to a new approach to perform object detection on satellite imagery. This system uses a single convolutional neural network (CNN) to predict classes and bounding boxes. The network looks at the entire image at the time of the training and testing, which greatly enhances the differentiation of the background since the network encodes the essential information for each object. The high speed of this system combined with its ability to detect and classify multiple objects in the same image makes it a compelling argument for use with satellite imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.