Abstract

BACKGROUND: The development of minimally-invasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital PCR-based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. In particular we studied the plasma of 14 medulloblastoma, 13 WHO grade 2-3 glioma and 14 WHO grade IV astrocytoma cases for levels of ctDNA. METHODS: The basis of our approach is to differentiate DNA shed by normal cells from DNA derived from tumor cells. In order to distinguish the two populations of cell-free DNA, we first identify a tumor-specific alteration. We then query for that exact mutation in matching plasma from the same patient to generate a personalized tumor biomarker. Only DNA derived from the tumor will harbor the genetic alteration. We initially use targeted, exomic, or whole genome sequencing to identify sequence or structural alterations in tumor tissues of 410 individuals. DNA was extracted from less than 5 ml of plasma in each case. The majority of plasma samples were queried for levels of ctDNA using a high fidelity next-generation sequencing approach coined Safe-SeqS. RESULTS: We found that at least one tumor-specific mutant molecule could be identified in 75% of patients with advanced ovarian, colorectal, bladder, gastroesophoageal, pancreatic, breast, melanoma, hepatocellular and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. Approximately 40% of medulloblastoma and 10% of low or high grade glioma cases had detectable levels of ctDNA. In patients with localized non-CNS tumors, ctDNA was detected in 73%, 57%, 48% and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor (EGFR) blockade in 24 colorectal cancer patients who objectively responded to therapy but who subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: Taken together, these data suggest that ctDNA is a sensitive, specific and robust biomarker that can be used for a variety of clinical and research purposes in patients with several multiple different types of cancer. For individuals with CNS neoplasms, alternate strategies may need to be developed in order to detect cell-free tumor derived DNA at levels that are clinically meaningful. ABSTRACT CATEGORY: Neuropathology & Tumor Biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.