Abstract

Time-resolved laser-induced plasma spectroscopy (LIPS) has been used as a tool for the detection of chromium in aerosol. In this article, LIPS has been used to achieve the lowest limits of detection for chromium (400 ng/dscm) in droplets. A comparison with other LIPS instruments and inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows that the limits of detection for chromium metal in aerosol range from 12 to 60 μg/dscm and 200 ng/dscm for LIPS and ICP-AES, respectively. We have studied the effects of laser wavelength, excitation energy, and optimum spectrometer delay time to optimize these low limits of detection. A Nd:YAG laser with output wavelengths of 1064, 532, and 266 nm has been used to study the effects of wavelength on laser energy and aerosol interactions—specifically, plasma initiation and efficiency of ionization in the detection of elemental species. Measured time-resolved spectra are used to establish the most appropriate time delay producing an optimum signal-to-background ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call