Abstract

The DNA extension in cylindrical nanochannels under moderately strong confinements in the “transition” region, where experiments are conducted, is examined by Monte Carlo simulations. The focal point is estimation of the amount of backfolding structures such as hairpins and loops in extended (linearized) DNA molecules. At the chain-ends of DNA an extensive folding (mainly as the J-type hairpins) is detected under all confinements, covering the Odijk and de Gennes regimes and the transition region between them. In contrast, in the DNA chain interior, the backfolding into Z-type hairpins is abundant in the de Gennes regime, significantly reduced in the transition region, and practically absent in the Odijk regime. The linear relationship between the DNA extension and its contour length is validated also in the transition region where explicit theories are absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.