Abstract

The enzyme, ribonucleotide reductase (RNR), is essential for DNA synthesis in all cells. The class Ia Escherichia coli RNR consists of two dimeric subunits, α2 and β2, which form an active but unstable heterodimer of dimers, α2β2. The structure of the wild-type form of the enzyme has been challenging to study due to the instability of the catalytic complex. A long-range proton-coupled electron-transfer (PCET) pathway facilitates radical migration from the Y122 radical-diiron cofactor in the β subunit to an active site cysteine, C439, in the α subunit to initiate the RNR chemistry. The PCET reactions and active site chemistry are spectroscopically masked by a rate-limiting, conformational gate. Here, we present a reaction-induced Fourier transform infrared (RIFTIR) spectroscopic method to monitor the mechanism of the active, wild-type RNR α2β2 complex. This method is employed to obtain new information about conformational changes accompanying RNR catalysis, including the role of carboxylate interactions, deprotonation, and oxidation of active site cysteines, and a detailed description of reversible secondary structural changes. Labeling of tyrosine revealed a conformationally active tyrosine in the β subunit, assigned to Y356β, which is part of the intersubunit PCET pathway. New insights into the roles of the inhibitors, azidoUDP and dATP, and the sensitivity of RIFTIR spectroscopy to detect subtle conformational motions arising from protein allostery are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.