Abstract

In this study, a simple, rapid, and label-free sensor was developed for detecting the enzymatic activity of catalase (CAT) with liquid crystals (LCs) confined in microcapillaries. Inside a microcapillary functionalized with n-octyltrichlorosilane, aldehyde-doped LCs anchored radially so that a pattern of straight lines was observed under a polarized optical microscope (POM). However, once hydrogen peroxide (HP) oxidized the aldehyde into carboxylic acid, which has surface activity, the orientation of the LCs at the interface changed, resulting in a distinct pattern change, from straight to crossed. In this system, the enzymatic activity of CAT could be detected as it inhibits the oxidation by decomposing HP; as a result, the pattern changed back to the straight one. From the orientational and optical shift, the enzymatic activity of CAT was detected up to a concentration of 0.8 fM under mild experimental conditions and 8 aM at pH 9.0. This result suggests the need for further study of microcapillary systems to develop simple and sensitive sensors for biochemical interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call