Abstract
Auscultation, the technique of listening to heart sounds with a stethoscope can be used as a primary detection system for diagnosing heart valve disorders. Phonocardiogram, the digital recording of heart sounds is becoming increasingly popular as it is relatively inexpensive. In this paper, a technique to improve the performance of the Least Square Support Vector Machine (LSSVM) is proposed for classification of normal and abnormal heart sounds using wavelet based feature set. In the proposed technique, the Lagrange multiplier is modified based on Least Mean Square (LMS) algorithm, which in turn modifies the weight vector to reduce the classification error. The basic idea is to enlarge the separating boundary surface, such that the separability between the clusters is increased. The updated weight vector is used at the time of testing. The performance of the proposed systems is evaluated on 64 different recordings of heart sounds comprising of normal and five different pathological cases. It is found that the proposed technique classifies the heart sounds with higher recognition accuracy than competing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.