Abstract

The captan residues in apple juice were detected by fluorescence spectrometry, and the content level of captan was predicted based on a genetic algorithm and support vector machines (GA-SVMs). According to the captan concentration in apple juice, the experimental samples were divided into four levels, including no excess, slight excess, moderate excess, and severe excess. A GA was used to select the characteristic wavelength and optimize SVM parameters, and SVM was applied to train the classification model. 50 characteristic wavelength points were selected from the original fluorescence spectra, which contained 401 wavelength points, and the classification accuracy of the training set and test set is 99.02% and 100%, respectively, which is higher than the traditional PLS method. The results show that a GA can effectively select the feature wavelengths, and an SVM model can accurately predict the content level of captan residues. A fast and non-destructive analysis method, combined with a GA and SVM based on fluorescence spectroscopy, was realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.