Abstract
Rapid and accurate detection of Camellia oleifera fruit is beneficial to improve the picking efficiency. However, detection faces new challenges because of the complex field environment. A Camellia oleifera fruit detection method based on YOLOv7 network and multiple data augmentation was proposed to detect Camellia oleifera fruit in complex field scenes. Firstly, the images of Camellia oleifera fruit were collected in the field to establish training and test sets. Detection performance was then compared among YOLOv7, YOLOv5s, YOLOv3-spp and Faster R-CNN networks. The YOLOv7 network with the best performance was selected. A DA-YOLOv7 model was established via the YOLOv7 network combined with various data augmentation methods. The DA-YOLOv7 model had the best detection performance and a strong generalisation ability in complex scenes, with mAP, Precision, Recall, F1 score and average detection time of 96.03%, 94.76%, 95.54%, 95.15% and 0.025 s per image, respectively. Therefore, YOLOv7 combined with data augmentation can be used to detect Camellia oleifera fruit in complex scenes. This study provides a theoretical reference for the detection and harvesting of crops under complex conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.