Abstract

Simple SummaryChinese indigenous cattle are economically important cattle breeds for animal husbandry development. The promotion and development of Chinese cattle breeds is essential. A previous study found that a nonsense mutation (rs378652941, c.483C > A, p.Cys161X) in bovine transmembrane protein 95 gene (TMEM95) seriously reduced reproductive performance in male Fleckvieh cattle; therefore, this locus was considered a candidate genetic marker in bovine marker-assisted selection (MAS) breeding. Until now, no study has identified this mutation in Chinese cattle breeds. Herein, we detected this c.483C > A mutation in 13 Chinese cattle breeds. Importantly, we found that this mutation did not exist at this locus in our analyzed breeds. Interestingly, we first identified a frameshift insertion/deletion (indel) mutation (NC_037346.1: g.27056998_27057000delCT) in the bovine TMEM95 gene in 11 cattle breeds. Together, the results of this study suggest that the mutation c.483C > A cannot serve as a genetic marker for molecular breeding among Chinese indigenous cattle breeds.Chinese indigenous cattle breeds have abundant genetic resources, which are valuable for the molecular breeding of cattle around the world. Thus, identifying important candidate genes and their genetic markers is very important for cattle molecular breeding. A previous study found that a nonsense mutation (rs378652941, c.483C > A, p.Cys161X) in the bovine transmembrane protein 95 gene (TMEM95) seriously reduced the reproductive performance in bulls, but few studies have detected this mutation in Chinese indigenous cattle breeds. Since the mutation c.483C > A may serve as a potential genetic marker for selecting higher fertility bulls, in the present study, using tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR), forced PCR restriction fragment length polymorphism (forced PCR-RFLP), and DNA sequencing methods, the mutation c.483C > A was detected in 765 individuals from 13 Chinese cattle breeds. However, the results showed that this mutation did not exist at this locus in our analyzed breeds. Interestingly, we identified a newly frameshift insertion/deletion (indel) mutation (NC_037346.1: g.27056998_27057000delCT) in the bovine TMEM95 gene in 11 cattle breeds, which changed the location of the termination codon and changed the 16 amino acids in the C-terminal to 21 amino acids. Combined with previous studies, our study provides evidence that in Chinese cattle breeds the mutation c.483C > A cannot be used as a genetic marker in molecular breeding.

Highlights

  • Cattle are among the most important domestic animals

  • We failed to detect the different genotypes of this locus via the T-ARMS-PCR and forced PCR-RFLP methods

  • Steppe cattle no mutation was revealed in this indel locus (Figure 3). This 2 bp indel was a frameshift mutation, which changed the location of the termination codon and changed the 16 amino acids in the

Read more

Summary

Introduction

Cattle are among the most important domestic animals. Vast in size and diverse in topography, has abundant cattle breeding resources. The earlier East Asian taurine ancestry reached China at least 3.9 thousand years ago [1]. China’s abundant cattle breeding resources are helpful for breeding new species or improving the reproductive performance of cattle around the world. Traditional crossbreeding depends on appearance identification and phenotypic selection, which are costly and time-consuming [2]. Molecular breeding has brought about great changes in the field of animal breeding, such as marker-assisted selection (MAS) breeding [3]. MAS breeding is based on the functional genes or molecular markers, identifying genes or genetic variations is essential to the breeding of cattle [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call