Abstract

The devices created on account of the developments in wearable technology are increasingly becoming a part of our daily lives. In particular, sensors have enhanced the usefulness of such devices. The aim of this paper is to detect human physical activity along with indoor/outdoor information by using mobile phones and a separate oxygen saturation sensor. There is no relevant dataset in the literature for this type of detection. For this purpose, data from four different types of human physical activity was collected through mobile phone and oxygen saturation sensors; 12 people aged between 20-65 years participated in the study. During the data collection process, different physical activities under different environmental conditions were performed by the subjects in 10 min. As a next step, a novel deep neural network (DNN) model specifically designed for physical activity recognition was proposed. In order to improve accuracy and reduce the computational complexity, standard deviation (sigma)-based features were introduced. To evaluate its efficacy, we conducted comparisons with selected machine learning algorithms on our proposed dataset. The results on our dataset indicate that the multimodal sigma-based features give the best classification accuracy of 81.60% using our proposed DNN method. Furthermore, the accuracy of the classification made with our proposed DNN method without sigma-based features was 79.04%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.