Abstract

Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.

Highlights

  • Many invertebrate species have endosymbiotic bacteria that exert various effects on the biology of their host

  • Despite good PCR products for seven isolates of B. schaefferi, three isolates of B. wolfi and two isolates of H. incongruens, were most likely due to genome mixing among several bacterial species. This was anticipated since our primers can identify various bacterial species

  • We constructed a phylogenetic tree with both: all the existing closely matching query sequences in GenBank and the newly generated sequences to confirm the presence of the bacterial endosymbionts within the studied freshwater crustacean host species

Read more

Summary

Introduction

Many invertebrate species have endosymbiotic bacteria that exert various effects on the biology of their host. The best studied examples of such interactions include cases of Wolbachia (Hurst et al, 2000) and Cardinium (Gotoh, Noda & Ito, 2007). These bacteria can interfere with host reproduction by inducing cytoplasmic incompatibility and shifts in sexual selection (Zhang, Zhao & Hong, 2012). Such interactions were traditionally regarded as harmful to the host, an increasing body of evidence supports host fitness benefits associated with the presence of symbionts (Zug & Hammerstein, 2018)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call