Abstract

ObjectivesThe main goal of this study was to accurately detect azole resistance in species of the Aspergillus fumigatus complex by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MethodsIdentification of isolates (n = 868) was done with MALDI-TOF MS using both commercial and in-house libraries. To determine azole susceptibility, the EUCAST E.Def. 9.3.2 method was applied as the reference standard. Identification of resistant isolates was confirmed by DNA sequence analysis. Protein spectra obtained by MALDI-TOF MS were analysed to differentiate species within the A. fumigatus complex and to detect azole-resistant A. fumigatus sensu stricto isolates. ResultsCorrect discrimination of A. fumigatus sensu stricto from cryptic species was accomplished in 100% of the cases applying principal component analysis (PCA) to protein spectra generated by MALDI-TOF MS. Furthermore, a specific peak (4586 m/z) was found to be present only in cryptic species. The application of partial least squares (PLS) discriminant analysis allowed 98.43% (±0.038) discrimination between susceptible and azole-resistant A. fumigatus sensu stricto isolates. Finally, based on PLS and SVM, A. fumigatus sensu stricto isolates with different cyp51A gene mutations were correctly clustered in 91.5% of the cases. ConclusionsMALDI-TOF MS combined with peak analysis is a novel tool that allows the differentiation of A. fumigatus sensu stricto from other species within the A. fumigatus complex, as well as the detection of azole-resistant A. fumigatus sensu stricto. Although further studies are still needed, the results reported here show the great potential of MALDI-TOF and machine learning for the rapid detection of azole-resistant Aspergillus fumigatus isolates from clinical origins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.